METHODS: The Inflammatory Bowel South-Eastern Norway (IBSEN) study is a population based study with a prospective design. From January 1990 to December 1993, all newly diagnosed patients with IBD from a well defined area in South Eastern Norway were included in the cohort. The 20-year follow-up was conducted between 2011 and 2014 and included a structured interview, a review of patient records, a clinical examination, laboratory tests, and a questionnaire regarding CAM use.

RESULTS: Of the 599 invited to attend the 20-year follow-up visit, 78.5% (UC = 314, CD = 156) participated in the follow-up study, whereas 95% (UC = 293 and CD = 146) completed the CAM questionnaire, 49% men. In total 122/439 (28%) reported use of CAM for their IBD, and 6% reported current CAM use. A significantly higher proportion of women than men (60% vs 40%, P = 0.02) reported to use CAM. CAM users were younger (49 years) than the non-users (56 years), P < 0.001. A significantly higher proportion CD patients compared to UC patients (34% vs 25%, P = 0.04) reported use of CAM treatment. With treatment of CAM occurred more frequently in patients with more than one relapse the last year than in patients in remission (35% vs 21%, P = 0.003). The 3 most commonly used types of CAM were acupuncture 63/122 (52%), homeopathy 49/122 (40%) and herbal medicine 47/122 (39%).

CONCLUSION(S): One third of the IBD patients reported CAM use 20 years after diagnosis. Prevalence of CAM use was comparable in the 10-year and 20-year follow-up. CAM use was more common among women, in younger patients, in UC patients, and in those with disease activity.

REFERENCES

P048
Type and durability of antibiotic therapy among patients with chronic antibiotic dependent pouchitis

Weaver Kimberly1, Long Millic2, Hetflyth Hao3, Barnes Edward4. 1University of North Carolina, Chapel Hill, North Carolina; 2University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 3University of North Carolina School of Medicine, Chapel Hill, North Carolina.

BACKGROUND: The management of chronic antibiotic dependent pouchitis (CADP) is associated with significant morbidity and burden to patients with an ideal poulch-anal anastomosis (IPAA). While standard fail to respond to antibiotic therapy for pouchitis, little guidance is available in choosing subsequent antibiotic regimens. We performed a retrospective study to evaluate specific antimicrobials as well as duration of therapy among patients treated for CADP in our multidisciplinary IBD center.

METHODS: We identified patients with CADP between January 1, 2009 and December 1, 2016. Patients diagnosed with Crohn’s disease of the pouch and acute antibiotic responsive pouchitis were excluded. For each individual with CADP, we analyzed the type and duration of up to 4 antibiotic regimens. Standard descriptive statistics are presented, including medians and interquartile ranges (IQR) for duration assessments and Wilcoxon-rank sum testing for comparisons of duration of antibiotic therapy.

RESULTS: A total of 288 patients were evaluated for pouch related disorders during the study period. From the initial population, 90 (31%) were excluded due to a diagnosis of Crohn’s disease of the pouch and 75 (26%) were excluded due to a diagnosis of acute antibiotic responsive pouchitis. In total, there were 123 patients (53% male, mean age at time of IPAA 40.9 years) who were diagnosed with CADP. Most patients underwent a 2-stage IPAA and had poldenosis prior to colectomy: In the majority of patients (93/123, 75%), the first antibiotic regimen consisted of a fluoroquinolone alone (43%) or a fluoroquinolone in combination with either metronidazole (36%) or another antibiotic (11%). Metronidazole was used in 15%, and other antibiotics in 10% of the patients. Of the 123 patients, 93%, 76%, and 59% received a second, third, or fourth antibiotic regimen, respectively. The use of fluoroquinolones alone or in combination decreased to 54%, 48%, and 40% of patients for the second, third, and fourth regimen. In particular, amoxicillin/clavulenate, sulfamethoxazole/trimethoprim, and rifaximin and dicyclazine were increasingly used in the third and fourth antibiotic approach (31% and 42%, respectively). The duration of the different antibiotic regimens varied, but fluoroquinolones alone were given for a significantly longer duration during the first 4 consecutive regimens compared to other antibiotics indicating a better persistence of therapy (regimen 1 median fluoroquinolone duration 32 weeks vs others 7.5 weeks (IQR 4–6), P < 0.001; regimen 2 median 20 weeks vs 8 weeks (IQR 4–28), P = 0.038, regimen 3 median 21 weeks vs 8 weeks (IQR 4–36), P = 0.005, regimen 4 median 20 weeks vs 10 weeks (IQR 4–20), P = 0.011).

CONCLUSION(S): In a retrospective cohort of patients with CADP, we found that standard therapy with a fluoroquinolone alone or in combination was most common as the initial treatment for CADP. Although fluoroquinolones in particular demonstrated significant longevity, over time the proportion of the population treated with alternative antibiotic regimens such as amoxicillin/clavulenate, sulfamethoxazole/trimethoprim, dicyclazine, and rifaximin increased presumably due to loss of response to standard therapy. Further studies are needed to individualize the therapeutic approach and determine the optimal antibiotic regimen with greatest durability and long-term response for this challenging patient population.

P049
Biologic effect of anti-TNF exposure on vedolizumab induction

Jossan Jacqueline1, Urago Ryan2, Pham Becky3, Jain Anjali4, Hester Kelly5, Webster Edelyn6, Dubrinsky Mariah7. 1Icahn School of Medicine at Mount Sinai, New York, New York; 2Icahn School of Medicine at Mount Sinai, New York, New York; 3Division of Pediatric Gastroenterology, Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York; 4Prometheus Labs Inc., San Diego, California; 5Prometheus Laboratories Inc, San Diego, California.

BACKGROUND: There are conflicting data on the impact of anti-TNF exposure on response to vedolizumab (VDZ). Post-hoc analyses of the VDZ registration (GEMINI) trials demonstrated decreased efficacy of VDZ in anti-TNF exposed subjects with real life experience reporting comparable efficacy rates. Reasons for this possible discrepancy remain unclear but include alterations in the biology post anti-TNF versus a marker of disease severity. We aimed to determine the influence of anti-TNF exposure on VDZ clinical, pk and biologic outcomes.

METHODS: As part of an ongoing intensive pharmacokinetics (PK) monitoring IBD registry we identified patients initiating VDZ. Anti-TNF exposure history was recorded and categorized into none/remote or recent with exposure within 100 days of starting VDZ. Anti-TNF serum concentrations and anti-drug antibodies (ADA) were measured at week 0. Biomarker including serum MAC/MAC-I, sIL17, and TNFs were collected at each infusion. Pre-dose serum VDZ concentrations and anti-TNF antibodies (ATB) were measured (Prometheus Laboratories Inc. San Diego, CA) at weeks 2, 6, and 14. Primary endpoint was steroid free clinical remission (SFCR) defined as a Harvey Bradshaw Index of <3 or a partial Mayo ≤1 at week 14 and off steroids. Descriptive statistics (frequency and medians (interquartile range (IQR)) summarized data and univariate statistics tested associations.

RESULTS: A total of 44 patients (17 CD, 27 UC) were included. Median age was 35 (18.5–47) years and disease duration was 7 (1.5–20.5) years. Forty-one percent (18/44) of patients were anti-TNF naïve and 73% of the 26 ever exposed were recent. Anti-TNF therapy was discontinued for primary non-response (n = 3), secondary loss of response (n = 15), adverse event (n = 8). Forty-three percent (19/44) achieved Week 14 SFCR (47% CD, 41% UC, P = 0.68). Median VDZ concentrations trended higher at week 6 and 14 compared to those who achieved SFCR (week 2: 2.30 vs 10.8 µg/mL, P = 0.076; week 6: 32.1 vs 27.1 µg/mL, P = 0.06; week 14: 16.5 vs 10.8 µg/mL, P = 0.15). SFCR was achieved in 42% of patients with recent anti-TNF exposure and 44% with remote/no anti-TNF exposure (P = 0.9). Median anti-TNF concentration at week 0 was 15.5 µg/mL (IQR 2.3–22.4) and...